PubMed 18801450
Referenced in: none
Automatically associated channels: Kv2.1 , Slo1
Title: Comparison of the endogenous IK currents in rat hippocampal neurons and cloned Kv2.1 channels in CHO cells.
Authors: Mingna Liu, Bo Gong, Zhi Qi
Journal, date & volume: Cell Biol. Int., 2008 Dec , 32, 1514-20
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/18801450
Abstract
The Kv2.1 potassium channel is a principal component of the delayed rectifier I(K) current in the pyramidal neurons of cortex and hippocampus. We used whole-cell patch-clamp recording techniques to systemically compare the electrophysiological properties between the native neuronal I(K) current of cultured rat hippocampal neurons and the cloned Kv2.1 channel currents in the CHO cells. The slope factors for the activation curves of both currents obtained at different prepulse holding potentials and holding times were similar, suggesting similar voltage-dependent gating. However, the half-maximal activation voltage for I(K) was approximately 20 mV more negative than the Kv2.1 channel in CHO cells at a given prepulse condition, indicating that the neuronal I(K) current had a lower threshold for activation than that of the Kv2.1 channel. In addition, the neuronal I(K) showed a stronger holding membrane potential and holding time-dependence than Kv2.1. The Kv2.1 channel gave a U-shaped inactivation, while the I(K) current did not. The I(K) current also had much stronger voltage-dependent inactivation than Kv2.1. These results imply that the neuronal factors could make Kv2.1 channels easier to activate. The information obtained from these comparative studies help elucidate the mechanism of molecular regulation of the native neuronal I(K) current in neurons.