Channelpedia

PubMed 7494135


Referenced in: none

Automatically associated channels: Kir2.1 , Kir3.1



Title: Intrinsic gating properties of a cloned G protein-activated inward rectifier K+ channel.

Authors: C A Doupnik, N F Lim, P Kofuji, N Davidson, H A Lester

Journal, date & volume: J. Gen. Physiol., 1995 Jul , 106, 1-23

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/7494135


Abstract
The voltage-, time-, and K(+)-dependent properties of a G protein-activated inwardly rectifying K+ channel (GIRK1/KGA/Kir3.1) cloned from rat atrium were studied in Xenopus oocytes under two-electrode voltage clamp. During maintained G protein activation and in the presence of high external K+ (VK = 0 mV), voltage jumps from VK to negative membrane potentials activated inward GIRK1 K+ currents with three distinct time-resolved current components. GIRK1 current activation consisted of an instantaneous component that was followed by two components with time constants tau f approximately 50 ms and tau s approximately 400 ms. These activation time constants were weakly voltage dependent, increasing approximately twofold with maximal hyperpolarization from VK. Voltage-dependent GIRK1 availability, revealed by tail currents at -80 mV after long prepulses, was greatest at potentials negative to VK and declined to a plateau of approximately half the maximal level at positive voltages. Voltage-dependent GIRK1 availability shifted with VK and was half maximal at VK -20 mV; the equivalent gating charge was approximately 1.6 e-. The voltage-dependent gating parameters of GIRK1 did not significantly differ for G protein activation by three heterologously expressed signaling pathways: m2 muscarinic receptors, serotonin 1A receptors, or G protein beta 1 gamma 2 subunits. Voltage dependence was also unaffected by agonist concentration. These results indicate that the voltage-dependent gating properties of GIRK1 are not due to extrinsic factors such as agonist-receptor interactions and G protein-channel coupling, but instead are analogous to the intrinsic gating behaviors of other inwardly rectifying K+ channels.