Channelpedia

PubMed 18480054


Referenced in: none

Automatically associated channels: Kv1.1 , Kv1.2 , Kv1.3



Title: Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease.

Authors: Song Han, Hong Yi, Shi-Jin Yin, Zong-Yun Chen, Hui Liu, Zhi-Jian Cao, Ying-Liang Wu, Wen-Xin Li

Journal, date & volume: J. Biol. Chem., 2008 Jul 4 , 283, 19058-65

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/18480054


Abstract
The potassium channel Kv1.3 is an attractive pharmacological target for immunomodulation of T cell-mediated autoimmune diseases. Potent and selective blockers of Kv1.3 are potential therapeutics for treating these diseases. Here we describe the design of a new peptide inhibitor that is potent and selective for Kv1.3. Three residues (Gly(11), Ile(28), and Asp(33)) of a scorpion toxin BmKTX were substituted by Arg(11), Thr(28), and His(33), resulting in a new peptide, named ADWX-1. The ADWX-1 peptide blocked Kv1.3 with picomolar affinity (IC(50), 1.89 pM), showing a 100-fold increase in activity compared with the native BmKTX toxin. The ADWX-1 also displayed good selectivity on Kv1.3 over related Kv1.1 and Kv1.2 channels. Furthermore, alanine-scanning mutagenesis was carried out to map the functional residues of ADWX-1 in blocking Kv1.3. Moreover, computational simulation was used to build a structural model of the ADWX-1-Kv1.3 complex. This model suggests that all mutated residues are favorable for both the high potency and selectivity of ADWX-1 toward Kv1.3. While Arg(11) of ADWX-1 interacts with Asp(386) in Kv1.3, Thr(28) and His(33) of ADWX-1 locate right above the selectivity filter-S6 linker of Kv1.3. Together, our data indicate that the specific ADWX-1 peptide would be a viable lead in the therapy of T cell-mediated autoimmune diseases, and the successful design of ADWX-1 suggests that rational design based on the structural model of the peptide-channel complex should accelerate the development of diagnostic and therapeutic agents for human channelopathies.