PubMed 18463232
Referenced in: none
Automatically associated channels: Kv7.2 , Kv7.3
Title: Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1.
Authors: Friderike Schuetz, Sharad Kumar, Philip Poronnik, David J Adams
Journal, date & volume: Am. J. Physiol., Cell Physiol., 2008 Jul , 295, C73-80
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/18463232
Abstract
The voltage-gated KCNQ2/3 and KCNQ3/5 K(+) channels regulate neuronal excitability. We recently showed that KCNQ2/3 and KCNQ3/5 channels are regulated by the ubiquitin ligase Nedd4-2. Serum- and glucocorticoid-regulated kinase-1 (SGK-1) plays an important role in regulation of epithelial ion transport. SGK-1 phosphorylation of Nedd4-2 decreases the ability of Nedd4-2 to ubiquitinate the epithelial Na(+) channel, which increases the abundance of channel protein in the cell membrane. In this study, we investigated the mechanism(s) of SGK-1 regulation of M-type KCNQ channels expressed in Xenopus oocytes. SGK-1 significantly upregulated the K(+) current amplitudes of KCNQ2/3 and KCNQ3/5 channels approximately 1.4- and approximately 1.7-fold, respectively, whereas the kinase-inactive SGK-1 mutant had no effect. The cell surface levels of KCNQ2-hemagglutinin/3 were also increased by SGK-1. Deletion of the KCNQ3 channel COOH terminus in the presence of SGK-1 did not affect the K(+) current amplitude of KCNQ2/3/5-mediated currents. Coexpression of Nedd4-2 and SGK-1 with KCNQ2/3 or KCNQ3/5 channels did not significantly alter K(+) current amplitudes. Only the Nedd4-2 mutant (S448A)Nedd4-2 exhibited a significant downregulation of the KCNQ2/3/5 K(+) current amplitudes. Taken together, these results demonstrate a potential mechanism for regulation of KCNQ2/3 and KCNQ3/5 channels by SGK-1 regulation of the activity of the ubiquitin ligase Nedd4-2.