PubMed 9315621
Referenced in: none
Automatically associated channels: Kir2.3
Title: Conducting and voltage-dependent behaviors of the native and purified SR Ca2+-release channels from the canine diaphragm.
Authors: M Picher, A Decrouy, S Proteau, E Rousseau
Journal, date & volume: Biochim. Biophys. Acta, 1997 Sep 4 , 1328, 243-60
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/9315621
Abstract
The ryanodine-sensitive Ca2+-release channel of the canine diaphragm sarcoplasmic reticulum (SR) was characterized using biochemical assays and the planar lipid bilayer technique. Diaphragm SR membranes have a [3H]ryanodine-binding capacity (Bmax) of 1.2 pmol/mg protein and a binding affinity (K(D)) of 6.3 nM. The conductance of the native channel was 330 pS in 50 mM/250 mM trans/cis CsCH3SO3 and was reduced to 71 pS by 10 mM Ca2+ trans. The Ca2+-release channel was purified as a 400 kDa protein on SDS-PAGE and displayed a conductance of 715 pS in 200 mM KCl. The native and purified Ca2+ channels were activated by micromolar Ca2+ and ATP and inhibited by Mg2+, ryanodine and ruthenium red. Although diaphragm muscle contraction was shown to depend on extracellular Ca2+ like cardiac muscles, we provide evidence that the diaphragm SR Ca2+-release channel may be classified as a skeletal ryanodine receptor isoform. First, the IC50 for [3H]ryanodine binding was in the same range as estimated for skeletal SR, with 20 nM. Second, the channel was maximally activated by 10-30 microM cytoplasmic Ca2+ and inhibited at higher concentrations. Third, ryanodine binding to the diaphragm SR was less sensitive to Ca2+ than cardiac SR, with EC50, values of 50 and 1 microM, respectively. Finally, Ca2+-release activity and [3H]ryanodine binding capacity of the diaphragm and skeletal SR were similarly more sensitive to Mg2+ than cardiac SR. Together, these results suggest a predominantly skeletal-type of excitation-contraction coupling in the diaphragm.