PubMed 10799482
Referenced in: none
Automatically associated channels: Kir2.3
Title: Alzheimer's beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line.
Authors: M Kawahara, Y Kuroda, N Arispe, E Rojas
Journal, date & volume: J. Biol. Chem., 2000 May 12 , 275, 14077-83
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/10799482
Abstract
A growing number of reports suggest that elevated levels of extracellular Alzheimer's beta-amyloid protein alter the homeostasis of free [Ca(2+)](i) in different cell types of the mammalian brain. In line with these results, we have previously shown that AbetaP[1-40] forms cation-selective channels (Ca(2+) included) across artificial planar bilayers formed from acidic phospholipids and across excised membrane patches from immortalized hypothalamic GnRH neurons (GT1-7 cells), suggesting that the nonregulated Ca(2+)-influx through these spontaneously formed "amyloid channels" may provide a mechanism to explain its toxicity (1). We have now found and report here that the application of AbetaP[1-40] to GT1-7 neurons consistently elevates [Ca(2+)](i) levels. We also found that human islet amylin and the prion protein fragment (PrP106-126), peptides that acquire beta-pleated sheet conformation in water solutions and have been reported to form ion channels across planar bilayer membranes, also increase cytosolic free calcium in GT1-7 neurons. Searching for protective agents, we found that soluble cholesterol, known to decrease the fluidity of the cell membrane, inhibits AbetaP[1-40]-evoked [Ca(2+)](i) rise. These results suggest that unregulated Ca(2+) entry across amyloid channels may be a common mechanism causing cell death, not only in diseases of the third age, including Alzheimer's disease and type 2 diabetes mellitus, but also in prion-induced diseases.