Channelpedia

PubMed 9914398


Referenced in: none

Automatically associated channels: Kir2.3 , Slo1



Title: Effect of caffeine on K+ efflux in frog skeletal muscle.

Authors: R A Venosa, A Hoya

Journal, date & volume: Pflugers Arch., 1999 Feb , 437, 417-22

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/9914398


Abstract
The exposure of frog skeletal muscle to caffeine (3-4 mM) generates an increase of the K+ (42K+) efflux rate coefficient (kK,o) which exhibits the following characteristics. First it is promoted by the rise in cytosolic Ca2+ ([Ca2+]i), because the effect is mimicked by ionomycin (1.25 microM), a Ca2+ ionophore. Second, the inhibition of caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) by 40 microM tetracaine significantly reduced the increase in kK,o (DeltakK,o). Third, charybdotoxin (23 nM), a blocker of the large-conductance Ca2+-dependent K+ channels (BKCa channels) reduced DeltakK,o by 22%. Fourth, apamin (10 nM), a blocker of the small-conductance Ca2+-dependent K+ channels (SKCa channels), did not affect DeltakK,o. Fifth, tolbutamide (800 microM), an inhibitor of KATP channels, reduced DeltakK,o by about 23%. Sixth, Ba2+, a blocker of most K+ channels, did not preclude the caffeine-induced DeltakK,o. Seventh, omitting Na+ from the external medium reduced DeltakK,o by about 40%. Eight, amiloride (5 mM) decreased DeltakK,o by 65%. It is concluded that the caffeine-induced rise of [Ca2+]i increases K+ efflux, through the activation of: (1) two channels (BKCa and KATP) and (2) an external Na+-dependent amiloride-sensitive process.