PubMed 9693105

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kv10.1 , Kv12.1

Title: Expression of ryanodine receptors in human embryonic kidney (HEK293) cells.

Authors: H W Querfurth, N J Haughey, S C Greenway, P W Yacono, D E Golan, J D Geiger

Journal, date & volume: Biochem. J., 1998 Aug 15 , 334 ( Pt 1), 79-86

PubMed link:

It has been shown previously that mobilization of caffeine-sensitive intracellular calcium (Ca2+i) stores increased the release of amyloid beta-peptide (Abeta) from transfected human embryonic kidney cells (HEK293) [Querfurth, Jiang, Geiger and Selkoe (1997) J. Neurochem. 69, 1580-1591]. The present study was to test the hypothesis that the caffeine/Abeta responses were due to interactions with specific subtypes of ryanodine receptors (RyR) using [3H]ryanodine receptor binding, epifluorescence imaging of Ca2+i, immunocytofluorescence, immunoprecipitation and PCR techniques. [3H]Ryanodine bound to a single class of high-affinity caffeine-sensitive sites (Kd=9.9+/-1.6 nM, Bmax=25+/-4 fmol/mg of protein). RyRs were immuno-decorated in a punctate reticulo-linear pattern. Results from SDS/PAGE and reverse transcriptase-PCR demonstrated endogenous expression of type 1 (skeletal) and type 2 (cardiac) RyRs. HEK293 cell RyRs were functionally active, because (i) [Ca2+]i increased 2.8-fold over baseline following applications of 5-15 mM caffeine, (ii) repetitive spiked increases in [Ca2+]i were observed, and (iii) evidence for a use-dependent block was obtained. Some of these findings were extended to include HeLa and human fibroblast cell lines, suggesting a broader applicability to cells of epithelioid lineage. Implications for the processing of the beta-amyloid precursor protein in Alzheimer's disease and for calcium channel research using transfected HEK293 cells are discussed.