PubMed 9763622
Referenced in: none
Automatically associated channels: Kv10.1
Title: An ether -à-go-go K+ current, Ih-eag, contributes to the hyperpolarization of human fusion-competent myoblasts.
Authors: P Bijlenga, T Occhiodoro, J H Liu, C R Bader, L Bernheim, J Fischer-Lougheed
Journal, date & volume: J. Physiol. (Lond.), 1998 Oct 15 , 512 ( Pt 2), 317-23
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/9763622
Abstract
1. Two early signs of human myoblast commitment to fusion are membrane potential hyperpolarization and concomitant expression of a non-inactivating delayed rectifier K+ current, IK(NI). This current closely resembles the outward K+ current elicited by rat ether-à-go-go (r-eag) channels in its range of potential for activation and unitary conductance. 2. It is shown that activation kinetics of IK(NI), like those of r-eag, depend on holding potential and on [Mg2+]o, and that IK(NI), like r-eag, is reversibly inhibited by a rise in [Ca2+]i. 3. Forced expression of an isolated human ether-à-go-go K+ channel (h-eag) cDNA in undifferentiated myoblasts generates single-channel and whole-cell currents with remarkable similarity to IK(NI). 4. h-eag current (Ih-eag) is reversibly inhibited by a rise in [Ca2+]i, and the activation kinetics depend on holding potential and [Mg2+]o. 5. Forced expression of h-eag hyperpolarizes undifferentiated myoblasts from -9 to -50 mV, the threshold for the activation of both Ih-eag and IK(NI). Similarly, the higher the density of IK(NI), the more hyperpolarized the resting potential of fusion-competent myoblasts. 6. It is concluded that h-eag constitutes the channel underlying IK(NI) and that it contributes to the hyperpolarization of fusion-competent myoblasts. To our knowledge, this is the first demonstration of a physiological role for a mammalian eag K+ channel.