Channelpedia

PubMed 10764222


Referenced in: none

Automatically associated channels: HCN2



Title: Kinetic and ionic properties of the human HCN2 pacemaker channel.

Authors: A Moroni, A Barbuti, C Altomare, C Viscomi, J Morgan, M Baruscotti, D Difrancesco

Journal, date & volume: Pflugers Arch., 2000 Mar , 439, 618-26

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/10764222


Abstract
Human cDNA coding for the hyperpolarization-activated "pacemaker" channel HCN2 was expressed in Phoenix cells and yielded an inward current (IhHCN2) activated on hyperpolarization. The average IhHCN2 was half-activated at -83.1 mV and its kinetics could be described by second-order Hodgkin-Huxley gating. The time constant curve was bell-shaped and peaked at -82.2 mV. With 115 mM external Na+ and 30 mM external K+, IhHCN2 reversed at -17.1 mV, and had a mean conductance of 5.6 nS. Reducing the external K+ or Na+ concentration led to a concentration-dependent reduction of the IhHCN2 conductance and to a hyperpolarizing shift of reversal potential. External Cs+ ions (5 mM) blocked IhHCN2 in a voltage-dependent way according to a Woodhull-type block model, at an electrical distance of 0.66 from the external membrane surface, and with a dissociation constant of 15 mM at 0 mV. Increasing cytoplasmic cAMP using forskolin increased IhHCN2 by shifting the current activation curve to more positive voltages (11.7 mV). Exposure of the intracellular side of inside-out macro-patches to cAMP led to a depolarizing shift of the channel open probability curve (15.2 mV with 10 microM cAMP). These results indicate that although hHCN2 channels share several properties with native cardiac f-channels, differences also exist in permeability and block properties, suggesting that native channels may not be composed simply of homomeric constructs.