Channelpedia

PubMed 11585049


Referenced in: none

Automatically associated channels: Kv1.5 , Slo1



Title: Effects of (-)-epigallocatechin-3-gallate, the main component of green tea, on the cloned rat brain Kv1.5 potassium channels.

Authors: B H Choi, J S Choi, D S Min, S H Yoon, D J Rhie, Y H Jo, M S Kim, S J Hahn

Journal, date & volume: Biochem. Pharmacol., 2001 Sep 1 , 62, 527-35

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/11585049


Abstract
The interaction of (-)-epigallocatechin-3-gallate (EGCG), the main component of green tea (Camellia sinensis), with rat brain Kv1.5 channels (rKv1.5) stably expressed in Chinese hamster ovary (CHO) cells was investigated using the whole-cell patch-clamp technique. EGCG inhibited rKv1.5 currents at +50 mV in a concentration-dependent manner, with an IC50 of 101.2+/-6.2 microM. Pretreatment with protein tyrosine kinase (PTK) inhibitors (10 microM genistein, 100 microM AG1296), a tyrosine phosphatase inhibitor (500 microM sodium orthovanadate), or a protein kinase C (PKC) inhibitor (10 microM chelerythrine) did not block the inhibitory effect of EGCG on rKv1.5. The inhibition of rKv1.5 by EGCG displayed voltage-independence over the full activation voltage range positive to +10 mV. EGCG had no effect on the midpoint potential or the slope factor for steady-state activation and inactivation. EGCG did not affect the ion selectivity of rKv1.5. The activation (at +50 mV) kinetics was significantly slowed by EGCG. During repolarization (at -40 mV), EGCG also slowed the deactivation of the tail currents, resulting in a crossover phenomenon. Reversal of inhibition was detected by the application of repetitive depolarizing pulses and of identical double pulses, especially during the early part of the activating pulse, in the presence of EGCG. EGCG-induced inhibition of rKv1.5 showed identical affinity between EGCG and the multiple closed states of rKv1.5. These results suggest that EGCG interacts directly with rKv1.5 channels. Furthermore, by analyzing the kinetics of the interaction between EGCG and rKv1.5, we conclude that the inhibition of rKv1.5 channels by EGCG includes at least two effects: EGCG preferentially binds to the channel in the closed state, and blocks the channel by pore occlusion while depolarization is maintained.