PubMed 11113310

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kv12.1

Title: N-Methyl-D-aspartate receptors and p38 mitogen-activated protein kinase are required for cAMP-dependent cyclase response element binding protein and Elk-1 phosphorylation in the striatum.

Authors: E S Choe, J F McGinty

Journal, date & volume: Neuroscience, 2000 , 101, 607-17

PubMed link:

In vivo cyclic adenosine monophosphate (cAMP)-induced N-methyl-D-aspartate receptor and mitogen-activated protein kinase activation was investigated in the dorsal striatum by semiquantitative immunocytochemistry. Intracerebroventricular infusion of 8-bromo-adenosine 3',5'-cyclic monophosphorothioate, Sp isomer (Sp-8-Br-cAMPS), increased phosphorylated cAMP-responsive element binding protein, phosphorylated Elk-1 and Fos immunoreactivity in a dose-dependent manner. Intracerebroventricular infusion of the N-methyl-D-aspartate antagonist, MK801, decreased, but tetrodotoxin or the mitogen-activated extracellular-regulated kinase inhibitor, PD98059, did not affect Sp-8-Br-cAMPS-induced phosphorylated c-AMP-responsive element binding protein, phosphorylated Elk-1, phosphorylated extracellular-signal-regulated kinase and Fos immunoreactivity. The p38 mitogen-activated protein kinase inhibitor, SB203580, decreased the Sp-8-Br-cAMPS-induced increase in all markers, except phosphorylated extracellular-signal-regulated kinase, in a dose-dependent manner. We suggest that N-methyl-D-aspartate receptors couple c-AMP to phosphorylation events and immediate early gene induction in the nucleus of striatal medium spiny neurons. These events are mediated by crosstalk between protein kinase A and mitogen-activated protein kinase cascades in vivo.