PubMed 11514547
Referenced in: none
Automatically associated channels: Cav1.3
Title: Functional properties of Cav1.3 (alpha1D) L-type Ca2+ channel splice variants expressed by rat brain and neuroendocrine GH3 cells.
Authors: P Safa, J Boulter, T G Hales
Journal, date & volume: J. Biol. Chem., 2001 Oct 19 , 276, 38727-37
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/11514547
Abstract
Ca(2+) enters pituitary and pancreatic neuroendocrine cells through dihydropyridine-sensitive channels triggering hormone release. Inhibitory metabotropic receptors reduce Ca(2+) entry through activation of pertussis toxin-sensitive G proteins leading to activation of K(+) channels and voltage-sensitive inhibition of L-type channel activity. Despite the cloning and functional expression of several Ca(2+) channels, those involved in regulating hormone release remain unknown. Using reverse transcription-polymerase chain reaction we identified mRNAs encoding three alpha(1) (alpha(1A), alpha(1C), and alpha(1D)), four beta, and one alpha(2)-delta subunit in rat pituitary GH(3) cells; alpha(1B) and alpha(1S) transcripts were absent. GH(3) cells express multiple alternatively spliced alpha(1D) mRNAs. Many of the alpha(1D) transcript variants encode "short" alpha(1D) (alpha(1D-S)) subunits, which have a QXXER amino acid sequence at their C termini, a motif found in all other alpha(1) subunits that couple to opioid receptors. The other splice variants identified terminate with a longer C terminus that lacks the QXXER motif (alpha(1D-L)). We cloned and expressed the predominant alpha(1D-S) transcript variants in rat brain and GH(3) cells and their alpha(lD-L) counterpart in GH(3) cells. Unlike alpha(1A) channels, alpha(1D) channels exhibited current-voltage relationships similar to those of native GH(3) cell Ca(2+) channels, but lacked voltage-dependent G protein coupling. Our data demonstrate that alternatively spliced alpha(1D) transcripts form functional Ca(2+) channels that exhibit voltage-dependent, G protein-independent facilitation. Furthermore, the QXXER motif, located on the C terminus of alpha(1D-S) subunit, is not sufficient to confer sensitivity to inhibitory G proteins.