Channelpedia

PubMed 11160646


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kv1.4 , Kv1.5 , Kv11.1 , Kv2.1 , Kv3.1 , Kv4.3



Title: Effects of bupivacaine and a novel local anesthetic, IQB-9302, on human cardiac K+ channels.

Authors: T González, M Longobardo, R Caballero, E Delpón, J Tamargo, C Valenzuela

Journal, date & volume: J. Pharmacol. Exp. Ther., 2001 Feb , 296, 573-83

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/11160646


Abstract
We have studied and compared the effects of bupivacaine with those induced by a new local anesthetic, IQB-9302, on human cardiac K+ channels hKv1.5, Kv2.1, Kv4.3, and HERG. Both drugs have a close chemical structure, only differing in their N-substituent (n-butyl and cyclopropylmethyl, for bupivacaine and IQB-9302, respectively). Both drugs blocked Kv2.1, Kv4.3, and HERG channels similarly. Bupivacaine inhibited these channels by 48.6 +/- 3.4, 45.4 +/- 12.4, and 43.1 +/- 9.1%, respectively, and IQB-9302 by 48.1 +/- 3.3, 36.1 +/- 3.7, and 50.3 +/- 6.6%, respectively. However, bupivacaine was 2.5 times more potent than IQB-9302 to block hKv1.5 channels (EC(50) = 8.9 +/- 1.4 versus 21.5 +/- 4.7 microM). Both drugs induced a time- and voltage-dependent block of hKv1.5 and Kv2.1 channels. Block of Kv4.3 channels induced by either drug was time- and voltage-dependent at membrane potentials coinciding with the activation of the channels. IQB-9302 produced an instantaneous block of Kv4.3 and hKv1.5 channels at the beginning of the depolarizing pulse that can be interpreted as a drug interaction with a nonconducting state. Bupivacaine and IQB-9302 induced a similar degree of block of HERG channels and induced a steep voltage-dependent decrease of the relative current. These results suggest that 1) bupivacaine and IQB-9302 block the open state of hKv1.5, Kv2.1, Kv4.3, and HERG channels; and 2) small differences at the N-substituent of these drugs do not affect the drug-induced block of Kv2.1, Kv4.3, or HERG, but specifically modify block of hKv1.5 channels.