PubMed 11274166

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: ClvC3 , ClvC4

Title: Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase.

Authors: P Huang, J Liu, A Di, N C Robinson, M W Musch, M A Kaetzel, D J Nelson

Journal, date & volume: J. Biol. Chem., 2001 Jun 8 , 276, 20093-100

PubMed link:

The multifunctional calcium/calmodulin-dependent protein kinase II, CaMKII, has been shown to regulate chloride movement and cellular function in both excitable and non-excitable cells. We show that the plasma membrane expression of a member of the ClC family of Cl(-) channels, human CLC-3 (hCLC-3), a 90-kDa protein, is regulated by CaMKII. We cloned the full-length hCLC-3 gene from the human colonic tumor cell line T84, previously shown to express a CaMKII-activated Cl(-) conductance (I(Cl,CaMKII)), and transfected this gene into the mammalian epithelial cell line tsA, which lacks endogenous expression of I(Cl,CaMKII). Biotinylation experiments demonstrated plasma membrane expression of hCLC-3 in the stably transfected cells. In whole cell patch clamp experiments, autonomously active CaMKII was introduced into tsA cells stably transfected with hCLC-3 via the patch pipette. Cells transfected with the hCLC-3 gene showed a 22-fold increase in current density over cells expressing the vector alone. Kinase-dependent current expression was abolished in the presence of the autocamtide-2-related inhibitory peptide, a specific inhibitor of CaMKII. A mutation of glycine 280 to glutamic acid in the conserved motif in the putative pore region of the channel changed anion selectivity from I(-) > Cl(-) to Cl(-) > I(-). These results indicate that hCLC-3 encodes a Cl(-) channel that is regulated by CaMKII-dependent phosphorylation.