PubMed 11682159
Referenced in: none
Automatically associated channels: Kir2.3 , Kv10.1
Title: The sulphydryl reagent, N-ethylmaleimide, disrupts sleep and blocks A1 adenosine receptor-mediated inhibition of intracellular calcium signaling in the in vitro ventromedial preoptic nucleus.
Authors: M Ikeda, M Sagara, Y Sekino, T Shirao, K Honda, T Yoshioka, C N Allen, S Inoué
Journal, date & volume: Neuroscience, 2001 , 106, 733-43
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/11682159
Abstract
To explore the neuronal signaling mechanisms underlying sleep regulation in the rat, the present study examined continuous intra-third ventricle infusion of N-ethylmaleimide (NEM), a sulphydryl reagent that inhibits G(i/o) protein-coupled receptor-mediated signaling pathways. The diurnal infusion of NEM (0.01-10 micromol/10 h) dose-dependently inhibited both non-rapid eye movement sleep and rapid eye movement sleep. A maximal dose of NEM (10 micromol/10 h) dramatically inhibited day-time sleep (-57% for non-rapid eye movement sleep and -89% for rapid eye movement sleep) with a compensatory increase of sleep during the subsequent night-time (+33% for non-rapid eye movement sleep and +259% for rapid eye movement sleep). The day-time brain temperature was also increased by NEM, demonstrating effects of NEM on both sleep and body temperature levels. Immunostaining of the rat hypothalamus with a monoclonal antibody against the A1 adenosine receptor (A1R) was used to explore the distribution of a sleep-related G(i/o) protein-coupled receptor. Robust A1R-like immunoreactivity was found in the ventromedial preoptic nucleus and the supraoptic nucleus. Fura-2-based Ca(2+) imaging analysis of acute hypothalamic slices further demonstrated that the A1R agonist N(6)-cyclopentyladenosine (CPA; 200 nM) inhibited spontaneous Ca(2+) oscillations and high potassium (80 mM)-induced Ca(2+) flux in the ventromedial preoptic nucleus, while NEM (100-300 microM) and an A1R antagonist 8-cyclopentyl-dipropylxanthine (300 nM) blocked the CPA actions and increased the high potassium-induced Ca(2+) flux. From these results we suggest that NEM-sensitive G protein-coupled receptor(s) may play an important role in the regulation of sleep and body temperature in the rat and one possible mechanism is an A1R-mediated regulation of intracellular Ca(2+) concentrations in the ventromedial preoptic nucleus.