PubMed 12496092
Referenced in: none
Automatically associated channels: SK1 , SK2
Title: Multiple regions of RyR1 mediate functional and structural interactions with alpha(1S)-dihydropyridine receptors in skeletal muscle.
Authors: Feliciano Protasi, Cecilia Paolini, Junichi Nakai, Kurt G Beam, Clara Franzini-Armstrong, Paul D Allen
Journal, date & volume: Biophys. J., 2002 Dec , 83, 3230-44
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12496092
Abstract
Excitation-contraction (e-c) coupling in muscle relies on the interaction between dihydropyridine receptors (DHPRs) and RyRs within Ca(2+) release units (CRUs). In skeletal muscle this interaction is bidirectional: alpha(1S)DHPRs trigger RyR1 (the skeletal form of the ryanodine receptor) to release Ca(2+) in the absence of Ca(2+) permeation through the DHPR, and RyR1s, in turn, affect the open probability of alpha(1S)DHPRs. alpha(1S)DHPR and RyR1 are linked to each other, organizing alpha(1S)-DHPRs into groups of four, or tetrads. In cardiac muscle, however, alpha(1C)DHPR Ca(2+) current is important for activation of RyR2 (the cardiac isoform of the ryanodine receptor) and alpha(1C)-DHPRs are not organized into tetrads. We expressed RyR1, RyR2, and four different RyR1/RyR2 chimeras (R4: Sk1635-3720, R9: Sk2659-3720, R10: Sk1635-2559, R16: Sk1837-2154) in 1B5 dyspedic myotubes to test their ability to restore skeletal-type e-c coupling and DHPR tetrads. The rank-order for restoring skeletal e-c coupling, indicated by Ca(2+) transients in the absence of extracellular Ca(2+), is RyR1 > R4 > R10 >> R16 > R9 >> RyR2. The rank-order for restoration of DHPR tetrads is RyR1 > R4 = R9 > R10 = R16 >> RyR2. Because the skeletal segment in R9 does not overlap with that in either R10 or R16, our results indicate that multiple regions of RyR1 may interact with alpha(1S)DHPRs and that the regions responsible for tetrad formation do not correspond exactly to the ones required for functional coupling.