Channelpedia

PubMed 12582169


Referenced in: none

Automatically associated channels: HCN1



Title: Identification of a surface charged residue in the S3-S4 linker of the pacemaker (HCN) channel that influences activation gating.

Authors: Charles A Henrikson, Tian Xue, Peihong Dong, Dongpei Sang, Eduardo Marbán, Ronald A Li

Journal, date & volume: J. Biol. Chem., 2003 Apr 18 , 278, 13647-54

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12582169


Abstract
I(f), encoded by the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channel family, is a key player in cardiac and neuronal pacing. Although HCN channels structurally resemble voltage-gated K(+) (Kv) channels, their structure-function correlation is much less clear. Here we probed the functional importance of the HCN1 S3-S4 linker by multiple substitutions of its residues. Neutralizing Glu(235), an acidic S3-S4 linker residue conserved in all hyperpolarization-activated channels, by Ala substitution produced a depolarizing activation shift (V(12) = -65.0 +/- 0.7 versus -70.6 +/- 0.7 mV for wild-type HCN1); the charge-reversed mutation E235R shifted activation even more positively (-56.2 +/- 0.5 mV). Increasing external Mg(2+) mimicked the progressive rightward shifts of E235A and E235R by gradually shifting activation (V(12) = 1 < 3 < 10 < 30 mm); Delta V(12) induced by 30 mm Mg(2+) was significantly attenuated for E235A (+7.9 +/- 1.2 versus +11.3 +/- 0.9 mV for wild-type HCN1) and E235R (+3.3 +/- 1.4 mV) channels, as if surface charges were already shielded. Consistent with an electrostatic role, the energetic changes associated with Delta V(12) resulting from various Glu(235) substitutions (i.e. Asp, Ala, Pro, His, Lys, and Arg) displayed a strong correlation with their charges (Delta Delta G = -2.1 +/- 0.3 kcal/mol/charge; r = 0.94). In contrast, D233E, D233A, D233G, and D233R did not alter activation gating. D233C (in C318S background) was also not externally accessible when probed with methanethiosulfonate ethylammonium (MTSEA). We conclude that the S3-S4 linker residue Glu(235) influences activation gating, probably by acting as a surface charge.