PubMed 12612061
Referenced in: none
Automatically associated channels: Kv11.1 , Slo1
Title: Selective knockout of mouse ERG1 B potassium channel eliminates I(Kr) in adult ventricular myocytes and elicits episodes of abrupt sinus bradycardia.
Authors: James P Lees-Miller, Jiqing Guo, Julie R Somers, Dan E Roach, Robert S Sheldon, Derrick E Rancourt, Henry J Duff
Journal, date & volume: Mol. Cell. Biol., 2003 Mar , 23, 1856-62
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12612061
Abstract
The ERG1 gene encodes a family of potassium channels. Mutations in human ERG1 lead to defects in cardiac repolarization, referred to as the long QT syndrome. Through homologous recombination in mouse embryonic stem cells the ERG1 B potassium channel transcript was eliminated while the ERG1 A transcript was maintained. Heterologous expression of ERG1 isoforms had previously indicated that the deactivation time course of ERG1 B is 10-fold more rapid than that of ERG1 A. In day-18 fetal +/+ myocytes, I(Kr) exhibited two time constants of deactivation (3,933 +/- 404 and 350 +/- 19 ms at -50 mV), whereas in age-matched ERG1 B(-/-) mice the rapid component was absent. Biexponential deactivation rates (2,039 +/- 268 and 163 +/- 43 ms at -50 mV) were also observed in adult +/+ myocytes. In adult ERG1 B(-/-) myocytes no I(Kr) was detected. Electrocardiogram intervals were similar in +/+ and -/- mice. However, adult -/- mice manifested abrupt spontaneous episodes of sinus bradycardia (>100 ms of slowing) in 6 out of 21 mice. This phenomenon was never observed in +/+ mice (0 out of 16). We conclude that ERG1 B is necessary for I(Kr) expression in the surface membrane of adult myocytes. Knockout of ERG1 B predisposes mice to episodic sinus bradycardia.