PubMed 12388128
Referenced in: none
Automatically associated channels: Kir6.2
Title: ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue.
Authors: Takashi Miki, Kohtaro Minami, Li Zhang, Mizuo Morita, Tohru Gonoi, Tetsuya Shiuchi, Yasuhiko Minokoshi, Jean-Marc Renaud, Susumu Seino
Journal, date & volume: Am. J. Physiol. Endocrinol. Metab., 2002 Dec , 283, E1178-84
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12388128
Abstract
ATP-sensitive potassium (K(ATP)) channels are known to be critical in the control of both insulin and glucagon secretion, the major hormones in the maintenance of glucose homeostasis. The involvement of K(ATP) channels in glucose uptake in the target tissues of insulin, however, is not known. We show here that Kir6.2(-/-) mice lacking Kir6.2, the pore-forming subunit of these channels, have no K(ATP) channel activity in their skeletal muscles. A 2-deoxy-[(3)H]glucose uptake experiment in vivo showed that the basal and insulin-stimulated glucose uptake in skeletal muscles and adipose tissues of Kir6.2(-/-) mice is enhanced compared with that in wild-type (WT) mice. In addition, in vitro measurement of glucose uptake indicates that disruption of the channel increases the basal glucose uptake in Kir6.2(-/-) extensor digitorum longus and the insulin-stimulated glucose uptake in Kir6.2(-/-) soleus muscle. In contrast, glucose uptake in adipose tissue, measured in vitro, was similar in Kir6.2(-/-) and WT mice, suggesting that the increase in glucose uptake in Kir6.2(-/-) adipocytes is mediated by altered extracellular hormonal or neuronal signals altered by disruption of the K(ATP) channels.