Channelpedia

PubMed 12665599


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kir7.1 , Slo1



Title: Regulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH.

Authors: Yukun Yuan, Masahiko Shimura, Bret A Hughes

Journal, date & volume: J. Physiol. (Lond.), 2003 Jun 1 , 549, 429-38

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12665599


Abstract
Inwardly rectifying K+ (Kir) channels in the apical membrane of the retinal pigment epithelium (RPE) play a key role in the transport of K+ into and out of the subretinal space (SRS), a small extracellular compartment surrounding photoreceptor outer segments. Recent molecular and functional evidence indicates that these channels comprise Kir7.1 channel subunits. The purpose of this study was to determine whether Kir channels in the RPE are modulated by extracellular (pHo) or intracellular pH (pHi), both of which change upon illumination of the dark-adapted retina. The Kir current (IKir) in acutely dissociated bovine RPE cells was recorded in the whole-cell configuration while altering pHo or pHi. In cells dialysed with pipette solution buffered to pH 7.2, step changes in pHo from 7.4 to 8.0, 7.0 or 6.5 had little effect on IKir. Acidification to pHo 6.0, however, caused a transient activation of IKir followed by a slower inhibition. To determine the dependence of IKir on pHi, we altered pHi within individual RPE cells at constant pHo by imposing transmembrane acetate concentration gradients. These experiments revealed a biphasic relationship between IKir and pHi: IKir was maximal at about pHi 7.1, but decreased sharply at more acidic or alkaline levels. To evaluate the role of Kir7.1 channels in the pHi-dependent changes in IKir, we tested the effect of transmembrane acetate concentration gradients on Rb+ currents, which are 10-fold larger than K+ currents for this channel subtype. Inwardly rectifying Rb+ currents were maximal at about pHi 7.0 and were inhibited by intracellular alkalinization or acidification. We conclude that the Kir conductance in the RPE is modulated by intracellular pH in the physiological range and that this reflects the behaviour of Kir7.1 channels. This sensitivity to pHi may provide an important mechanism linking photoreceptor activity and RPE function.