Channelpedia

PubMed 12699787


Referenced in: none

Automatically associated channels: HCN1 , HCN2 , HCN3 , HCN4



Title: Hyperpolarization-activated, cyclic AMP-gated, HCN1-like cation channel: the primary, full-length HCN isoform expressed in a saccular hair-cell layer.

Authors: W J Cho, M J Drescher, J S Hatfield, D A Bessert, R P Skoff, D G Drescher

Journal, date & volume: Neuroscience, 2003 , 118, 525-34

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12699787


Abstract
The expression of transcript for hyperpolarization-activated, cyclic nucleotide-sensitive cation channel (HCN) isoforms underlying hyperpolarization-activated, inward current (I(h)) has been determined for a model hair-cell preparation from the saccule of the rainbow trout, Oncorhynchus mykiss. Based upon identification from homology to known vertebrate HCN cDNA sequence, cloning of PCR products amplified with degenerate primers indicated an expression frequency of 7:2:1 (HCN1:HCN2:HCN4) for the hair-cell sheet compared with 1:1:7 for brain. Full-length sequence has been obtained for the HCN1-like isoform representing the primary HCN transcript expressed in the hair-cell preparation. The channel protein is 938 amino acids in length with 93% amino acid identity for the region extending from the S1-S6 membrane spanning domains through the voltage-pore and cyclic nucleotide-binding domains, compared with HCN1 for rabbit, rat, mouse and human. The N- and C-terminal regions are less homologous, with 39-51% and 43-44% amino acid identities, respectively. Compared with other vertebrate HCN1, the hair-cell HCN1 contains additional consensus phosphorylation sites associated with unique repeats in the carboxy terminus. The HCN1-like transcript has been localized to hair cells of the saccular sensory epithelia by in situ hybridization. Previous electrophysiological studies have identified I(h) as the sole inwardly rectifying ion channel in a specific population of hair cells of the saccule of frogs [J Neurophysiol (1995) 73:1484] and fish [J Physiol (1996) 495:665]. I(h) is an important determinant of the resting membrane potential, and for this population of hair cells, is predicted to maintain the membrane potential within a voltage range allowing the voltage-gated calcium channels to open, permitting "spontaneous" release of transmitter. The molecular properties of the HCN1-like isoform underlying I(h) expressed in the saccular hair cells of the teleost, trout, may consequently impact spontaneous release of transmitter from hair cells of the saccule.