PubMed 26009185

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: TRP , TRPM , TRPM2

Title: Designer small molecules to target calcium signalling.

Authors: Joanna M Swarbrick, Andrew M Riley, Stephen J Mills, Barry V L Potter

Journal, date & volume: Biochem. Soc. Trans., 2015 Jun , 43, 417-25

PubMed link:

Synthetic compounds open up new avenues to interrogate and manipulate intracellular Ca2+ signalling pathways. They may ultimately lead to drug-like analogues to intervene in disease. Recent advances in chemical biology tools available to probe Ca2+ signalling are described, with a particular focus on those synthetic analogues from our group that have enhanced biological understanding or represent a step towards more drug-like molecules. Adenophostin (AdA) is the most potent known agonist at the inositol 1,4,5-trisphosphate receptor (IP3R) and synthetic analogues provide a binding model for receptor activation and channel opening. 2-O-Modified inositol 1,4,5-trisphosphate (IP3) derivatives that are partial agonists at the IP3R reveal key conformational changes of the receptor upon ligand binding. Biphenyl polyphosphates illustrate that simple non-inositol surrogates can be engineered to give prototype IP3R agonists or antagonists and act as templates for protein co-crystallization. Cyclic adenosine 5'-diphosphoribose (cADPR) can be selectively modified using total synthesis, generating chemically and biologically stable tools to investigate Ca2+ release via the ryanodine receptor (RyR) and to interfere with cADPR synthesis and degradation. The first neutral analogues with a synthetic pyrophosphate bioisostere surprisingly retain the ability to release Ca2+, suggesting a new route to membrane-permeant tools. Adenosine 5'-diphosphoribose (ADPR) activates the Ca2+-, Na+- and K+-permeable transient receptor potential melastatin 2 (TRPM2) cation channel. Synthetic ADPR analogues provide the first structure-activity relationship (SAR) for this emerging messenger and the first functional antagonists. An analogue based on the nicotinic acid motif of nicotinic acid adenine dinucleotide phosphate (NAADP) antagonizes NAADP-mediated Ca2+ release in vitro and is effective in vivo against induced heart arrhythmia and autoimmune disease, illustrating the therapeutic potential of targeted small molecules.