PubMed 26105002

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: SK4 , Slo1

Title: Effects of new class III antiarrhythmic drug niferidil on electrical activity in murine ventricular myocardium and their ionic mechanisms.

Authors: Denis V Abramochkin, Vladislav S Kuzmin, Leonid V Rosenshtraukh

Journal, date & volume: Naunyn Schmiedebergs Arch. Pharmacol., 2015 Oct , 388, 1105-12

PubMed link:

A new class III antiarrhythmic drug niferidil has been recently introduced as a highly effective therapy cure for cases of persistent atrial fibrillation, but ionic mechanisms of its action are still unknown. Effects of niferidil on action potential (AP) waveform and major ionic currents were studied in mouse ventricular myocardium. APs were recorded with glass microelectrodes in multicellular preparations of right ventricular wall. Whole-cell patch-clamp technique was used to measure K(+), Ca(2+), and Na(+) currents in isolated mouse ventricular myocytes. While 10(-7) M niferidil failed to alter the AP configuration, 10(-6) M tended to prolong APs (by 12.05 ± 1.8% at 50% of repolarization) and 10(-5) M induced significant slowing of repolarization (32.1 ± 4.9% at 50% of repolarization). Among the potassium currents responsible for AP repolarization phase, IK1 was found to be almost insensitive to niferidil. Ito demonstrated low sensitivity to niferidil with IC50 = 2.03 × 10(-4) M. IKur, which was previously hypothesized to be the main target of the drug, was more sensitive with IC50 = 6 × 10(-5) M. However, sustained delayed rectifier potassium current Iss was inhibited with even lower IC50 = 2.8 × 10(-5) M. Therefore, suppression of Iss and, second, IKur by niferidil seems to underlie the AP prolongation in mouse ventricular tissue. Niferidil also produced a modest decrease in ICaL peak amplitude (IC50≈10(-4) M), but failed to alter INa significantly. Niferidil prolongs APs in mouse ventricular myocardium mainly by inhibiting Iss and IKur K(+) currents, but not exclusively IKur, as was proposed earlier. Further investigations are required to reveal the mechanisms of niferidil action in human myocardium, where IKr is strongly expressed instead of Iss.