Channelpedia

PubMed 26597702


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: TRP , TRPM



Title: Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels.

Authors: Sabrina Mindthoff, Silke Grunau, Laura L Steinfort, Wolfgang Girzalsky, J Kalervo Hiltunen, Ralf Erdmann, Vasily D Antonenkov

Journal, date & volume: Biochim. Biophys. Acta, 2016 Feb , 1863, 271-83

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/26597702


Abstract
More than 30 proteins (Pex proteins) are known to participate in the biogenesis of peroxisomes-ubiquitous oxidative organelles involved in lipid and ROS metabolism. The Pex11 family of homologous proteins is responsible for division and proliferation of peroxisomes. We show that yeast Pex11 is a pore-forming protein sharing sequence similarity with TRPM cation-selective channels. The Pex11 channel with a conductance of Λ=4.1 nS in 1.0M KCl is moderately cation-selective (PK(+)/PCl(-)=1.85) and resistant to voltage-dependent closing. The estimated size of the channel's pore (r~0.6 nm) supports the notion that Pex11 conducts solutes with molecular mass below 300-400 Da. We localized the channel's selectivity determining sequence. Overexpression of Pex11 resulted in acceleration of fatty acids β-oxidation in intact cells but not in the corresponding lysates. The β-oxidation was affected in cells by expression of the Pex11 protein carrying point mutations in the selectivity determining sequence. These data suggest that the Pex11-dependent transmembrane traffic of metabolites may be a rate-limiting step in the β-oxidation of fatty acids. This conclusion was corroborated by analysis of the rate of β-oxidation in yeast strains expressing Pex11 with mutations mimicking constitutively phosphorylated (S165D, S167D) or unphosphorylated (S165A, S167A) protein. The results suggest that phosphorylation of Pex11 is a mechanism that can control the peroxisomal β-oxidation rate. Our results disclose an unexpected function of Pex11 as a non-selective channel responsible for transfer of metabolites across peroxisomal membrane. The data indicate that peroxins may be involved in peroxisomal metabolic processes in addition to their role in peroxisome biogenesis.