Channelpedia

PubMed 25813190


Referenced in: none

Automatically associated channels: TRP , TRPA , TRPA1



Title: The roles of thermal transient receptor potential channels in thermotactic behavior and in thermal acclimation in the red flour beetle, Tribolium castaneum.

Authors: Hong Geun Kim, David Margolies, Yoonseong Park

Journal, date & volume: J. Insect Physiol., 2015 May , 76, 47-55

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/25813190


Abstract
To survive in variable or fluctuating temperature, organisms should show appropriate behavioral and physiological responses which must be mediated through properly attuned thermal sensory mechanisms. Transient receptor potential channels (TRPs) are a family of cation channels a number of which, called thermo-TRPs, are known to function as thermosensors. We investigated the potential role of thermo-TPRs that have been previously identified in the fruit fly, Drosophila melanogaster, in thermotaxis and thermal acclimation in the red flour beetle, Tribolium castaneum. Phylogenetic analysis of the trp genes showed generally one-to-one orthology between those in D. melanogaster and in T. castaneum, although there are putative gene-losses in two TRP subfamilies of D. melanogaster. With RNA interference (RNAi) of T. castaneum thermo-TRP candidates painless, pyrexia and trpA1, we measured thermal avoidance behavior. RNAi of trpA1 resulted in reduced avoidance of high temperatures, 39 and 42 °C. We also measured the effects of RNAi on heat-induced knockout and death under a short exposure to high temperature (1min at 52 °C) either with or without a 10-min acclimation period at 42 °C. Relatively short exposure to high temperature was enough to induce high temperature thermal acclimation. RNAi of trpA1 led to faster knockout at 52 °C. RNAi of painless showed lower recovery rates from heat-induced knockout after thermal acclimation, and RNAi of pyrexia showed lower long-term survivorship without thermal acclimation. Therefore, we concluded that trpA1 is important in high temperature sensing and also in enhanced tolerance to high-temperature induced knockout; painless plays a role in rapid acclimation to high temperature; and pyrexia functions in protecting beetles from acute heat stress without acclimation.