PubMed 25879940
Referenced in: none
Automatically associated channels: TRP , TRPM , TRPM2
Title: ADP-ribose/TRPM2-mediated Ca2+ signaling is essential for cytolytic degranulation and antitumor activity of natural killer cells.
Authors: So-Young Rah, Jae-Yong Kwak, Yun-Jo Chung, Uh-Hyun Kim
Journal, date & volume: Sci Rep, 2015 , 5, 9482
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/25879940
Abstract
Natural killer (NK) cells are essential for immunosurveillance against transformed cells. Transient receptor potential melastatin 2 (TRPM2) is a Ca(2+)-permeable cation channel gated by ADP-ribose (ADPR). However, the role of TRPM2-mediated Ca(2+) signaling in the antitumor response of NK cells has not been explored. Here, we show that ADPR-mediated Ca(2+) signaling is important for cytolytic granule polarization and degranulation but not involved in target cell recognition by NK cells. The key steps of this pathway are: 1) the activation of intracellular CD38 by protein kinase A following the interaction of the NK cell with a tumor cell results in the production of ADPR, 2) ADPR targets TRPM2 channels on cytolytic granules, and 3) TRPM2-mediated Ca(2+) signaling induces cytolytic granule polarization and degranulation, resulting in antitumor activity. NK cells treated with 8-Br-ADPR, an ADPR antagonist, as well as NK cells from Cd38(-/-) mice showed reduced tumor-induced granule polarization, degranulation, granzyme B secretion, and cytotoxicity of NK cells. Furthermore, TRPM2-deficient NK cells showed an intrinsic defect in tumoricidal activity. These results highlight CD38, ADPR, and TRPM2 as key players in the specialized Ca(2+) signaling system involved in the antitumor activity of NK cells.