Channelpedia

PubMed 26019114


Referenced in: none

Automatically associated channels: Kir2.3 , Kv7.1



Title: Third trimester fetal heart rate predicts phenotype and mutation burden in the type 1 long QT syndrome.

Authors: Annika Winbo, Inger Fosdal, Maria Lindh, Ulla-Britt Diamant, Johan Persson, Göran Wettrell, Annika Rydberg

Journal, date & volume: Circ Arrhythm Electrophysiol, 2015 Aug , 8, 806-14

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/26019114


Abstract
Early diagnosis and risk stratification is of clinical importance in the long QT syndrome (LQTS), however, little genotype-specific data are available regarding fetal LQTS. We investigate third trimester fetal heart rate, routinely recorded within public maternal health care, as a possible marker for LQT1 genotype and phenotype.This retrospective study includes 184 fetuses from 2 LQT1 founder populations segregating p.Y111C and p.R518X (74 noncarriers and 110 KCNQ1 mutation carriers, whereof 13 double mutation carriers). Pedigree-based measured genotype analysis revealed significant associations between fetal heart rate, genotype, and phenotype; mean third trimester prelabor fetal heart rates obtained from obstetric records (gestational week 29-41) were lower per added mutation (no mutation, 143±5 beats per minute; single mutation, 134±8 beats per minute; double mutations, 111±6 beats per minute; P<0.0001), and lower in symptomatic versus asymptomatic mutation carriers (122±10 versus 137±9 beats per minute; P<0.0001). Strong correlations between fetal heart rate and neonatal heart rate (r=0.700; P<0.001), and postnatal QTc (r=-0.762; P<0.001) were found. In a multivariable model, fetal genotype explained the majority of variance in fetal heart rate (-10 beats per minute per added mutation; P<1.0×10(-23)). Arrhythmia symptoms and intrauterine β-blocker exposure each predicted -7 beats per minute, P<0.0001.In this study including 184 fetuses from 2 LQT1 founder populations, third trimester fetal heart rate discriminated between fetal genotypes and correlated with severity of postnatal cardiac phenotype. This finding strengthens the role of fetal heart rate in the early detection and risk stratification of LQTS, particularly for fetuses with double mutations, at high risk of early life-threatening arrhythmias.