Channelpedia

PubMed 25283065


Referenced in: none

Automatically associated channels: Kir2.1



Title: Essential role of RVL medullary neuronal activity in the long term maintenance of hypertension in conscious SHR.

Authors: Vera Geraldes, Nataniel Gonçalves-Rosa, Beihui Liu, Julian F R Paton, Isabel Rocha

Journal, date & volume: Auton Neurosci, 2014 Dec , 186, 22-31

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/25283065


Abstract
It is well established that sympathetic nervous system is responsible for the onset, development and maintenance of neurogenic hypertension. The rostroventrolateral medulla (RVLM) and medullo-cervical pressor area (MCPA) are important central sympathoexcitatory regions whose role on neurogenic hypertension remains unknown.To establish RVLM and MCPA roles in the long-term regulation of blood pressure by depressing their neuron activity through the over-expression of hKir2.1-potassium channel in conscious spontaneously hypertensive rats (SHR).In SHR, a lentiviral vector LVV-hKir2.1 was microinjected into RVLM or MCPA areas. A sham group was injected with LVV-eGFP. Blood pressure (BP) and heart rate (HR) were continuously monitored for 75 days. Baroreflex and chemoreflex functions were evaluated. Baroreflex gain, chemoreflex sensitivity, BP and HR variability were calculated.LVV-hKir2.1 expression in RVLM, but not in MCPA, produced a significant time-dependent decrease in systolic, diastolic, mean-BP and LF of systolic BP at 60-days post-injection. No significant changes were seen in LVV-eGFP RVLM injected SHR.Data show that chronic expression of Kir2.1 in the RVLM of conscious SHR caused a marked and sustained decrease in BP without changes in the baro- and peripheral chemoreceptor reflex evoked responses. This decrease was mostly due to a reduction in sympathetic output revealed indirectly by a decrease in the power density of the SBP-LF band. Our data are amongst the firsts to demonstrate the role of the RVLM in maintaining BP levels in hypertension in conscious SHR. We suggest that a decrease in RVLM neuronal activity is an effective anti-hypertensive treatment strategy.