Channelpedia

PubMed 25351988


Referenced in: none

Automatically associated channels: TRP , TRPV , TRPV3



Title: The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia.

Authors: Reona Aijima, Bing Wang, Tomoka Takao, Hiroshi Mihara, Makiko Kashio, Yasuyoshi Ohsaki, Jing-Qi Zhang, Atsuko Mizuno, Makoto Suzuki, Yoshio Yamashita, Sadahiko Masuko, Masaaki Goto, Makoto Tominaga, Mizuho A Kido

Journal, date & volume: FASEB J., 2015 Jan , 29, 182-92

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/25351988


Abstract
The oral cavity provides an entrance to the alimentary tract to serve as a protective barrier against harmful environmental stimuli. The oral mucosa is susceptible to injury because of its location; nonetheless, it has faster wound healing than the skin and less scar formation. However, the molecular pathways regulating this wound healing are unclear. Here, we show that transient receptor potential vanilloid 3 (TRPV3), a thermosensitive Ca(2+)-permeable channel, is more highly expressed in murine oral epithelia than in the skin by quantitative RT-PCR. We found that temperatures above 33°C activated TRPV3 and promoted oral epithelial cell proliferation. The proliferation rate in the oral epithelia of TRPV3 knockout (TRPV3KO) mice was less than that of wild-type (WT) mice. We investigated the contribution of TRPV3 to wound healing using a molar tooth extraction model and found that oral wound closure was delayed in TRPV3KO mice compared with that in WT mice. TRPV3 mRNA was up-regulated in wounded tissues, suggesting that TRPV3 may contribute to oral wound repair. We identified TRPV3 as an essential receptor in heat-induced oral epithelia proliferation and wound healing. Our findings suggest that TRPV3 activation could be a potential therapeutic target for wound healing in skin and oral mucosa.