Channelpedia

PubMed 26019339


Referenced in: none

Automatically associated channels: TRP , TRPV , TRPV4



Title: Astrocyte contributions to flow/pressure-evoked parenchymal arteriole vasoconstriction.

Authors: Ki Jung Kim, Jennifer A Iddings, Javier E Stern, Víctor M Blanco, Deborah Croom, Sergei A Kirov, Jessica A Filosa

Journal, date & volume: J. Neurosci., 2015 May 27 , 35, 8245-57

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/26019339


Abstract
Basal and activity-dependent cerebral blood flow changes are coordinated by the action of critical processes, including cerebral autoregulation, endothelial-mediated signaling, and neurovascular coupling. The goal of our study was to determine whether astrocytes contribute to the regulation of parenchymal arteriole (PA) tone in response to hemodynamic stimuli (pressure/flow). Cortical PA vascular responses and astrocytic Ca(2+) dynamics were measured using an in vitro rat/mouse brain slice model of perfused/pressurized PAs; studies were supplemented with in vivo astrocytic Ca(2+) imaging. In vitro, astrocytes responded to PA flow/pressure increases with an increase in intracellular Ca(2+). Astrocytic Ca(2+) responses were corroborated in vivo, where acute systemic phenylephrine-induced increases in blood pressure evoked a significant increase in astrocytic Ca(2+). In vitro, flow/pressure-evoked vasoconstriction was blunted when the astrocytic syncytium was loaded with BAPTA (chelating intracellular Ca(2+)) and enhanced when high Ca(2+) or ATP were introduced to the astrocytic syncytium. Bath application of either the TRPV4 channel blocker HC067047 or purinergic receptor antagonist suramin blunted flow/pressure-evoked vasoconstriction, whereas K(+) and 20-HETE signaling blockade showed no effect. Importantly, we found TRPV4 channel expression to be restricted to astrocytes and not the endothelium of PA. We present evidence for a novel role of astrocytes in PA flow/pressure-evoked vasoconstriction. Our data suggest that astrocytic TRPV4 channels are key molecular sensors of hemodynamic stimuli and that a purinergic, glial-derived signal contributes to flow/pressure-induced adjustments in PA tone. Together our results support bidirectional signaling within the neurovascular unit and astrocytes as key modulators of PA tone.