PubMed 26206987

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kir2.3

Title: Blood groups - minuses and pluses. Do the blood group antigens protect us from infectious diseases?

Authors: Marcin Czerwiński

Journal, date & volume: Postepy Hig Med Dosw (Online), 2015 , 69, 703-22

PubMed link:

Human blood can be divided into groups, which is a method of blood classification based on the presence or absence of inherited erythrocyte surface antigens that can elicit immune response. According to the International Society of Blood Transfusion, there are 341 blood group antigens collected in 35 blood group systems. These antigens can be proteins, glycoproteins or glycosphingolipids, and function as transmembrane transporters, ion channels, adhesion molecules or receptors for other proteins. The majority of blood group antigens is present also on another types of cells. Due to their localization on the surface of cells, blood group antigens can act as receptors for various pathogens or their toxins, such as protozoa (malaria parasites), bacteria (Helicobacter pylori, Vibrio cholerae and Shigella dysenteriae) and viruses (Noroviruses, Parvoviruses, HIV). If the presence of group antigen (or its variant which arised due to mutation) is beneficial for the host (e.g. because pathogens are not able to bind to the cells), the blood group may become a selection trait, leading to its dissemination in the population exposed to that pathogen. There are thirteen blood group systems that can be related to pathogen resistance, and it seems that the particular influence was elicit by malaria parasites. It is generally thought that the high incidence of blood groups such as O in the Amazon region, Fy(a-b-) in Africa and Ge(-) in Papua-New Guinea is the result of selective pressure from malaria parasite. This review summarizes the data about relationship between blood groups and resistance to pathogens.