PubMed 26303500

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Cav3.1 , Cav3.2 , Cav3.3

Title: Inhibition of T-type Ca(2+) Channels by Hydrogen Sulfide.

Authors: Jacobo Elíes, Jason L Scragg, Mark L Dallas, Dongyang Huang, Sha Huang, John P Boyle, Nikita Gamper, Chris Peers

Journal, date & volume: Adv. Exp. Med. Biol., 2015 , 860, 353-60

PubMed link:

T-type Ca(2+) channels are a distinct family of low voltage-activated Ca(2+) channels which serve many roles in different tissues. Several studies have implicated them, for example, in the adaptive responses to chronic hypoxia in the cardiovascular and endocrine systems. Hydrogen sulfide (H(2)S) was more recently discovered as an important signalling molecule involved in many functions, including O(2) sensing. Since ion channels are emerging as an important family of target proteins for modulation by H(2)S, and both T-type Ca(2+) channels and H(2)S are involved in cellular responses to hypoxia, we have investigated whether recombinant and native T-type Ca(2+) channels are a target for modulation by H(2)S. Using patch-clamp electrophysiology, we demonstrate that the H(2)S donor, NaHS, selectively inhibits Cav3.2 T-type Ca(2+) channels heterologously expressed in HEK293 cells, whilst Cav3.1 and Cav3.3 channels were unaffected. Sensitivity of Cav3.2 channels to H2S required the presence of the redox-sensitive extracellular residue H191, which is also required for tonic binding of Zn(2+) to this channel. Chelation of Zn(2+) using TPEN prevented channel inhibition by H(2)S. H2S also selectively inhibited native T-type channels (primarily Cav3.2) in sensory dorsal root ganglion neurons. Our data demonstrate a novel target for H(2)S regulation, the T-type Ca(2+) channel Cav3.2. Results have important implications for the proposed pro-nociceptive effects of this gasotransmitter. Implications for the control of cellular responses to hypoxia await further study.