Channelpedia

PubMed 26458875


Referenced in: none

Automatically associated channels: TRP , TRPV , TRPV3



Title: The Xenopus tropicalis orthologue of TRPV3 is heat sensitive.

Authors: Beiying Liu, Feng Qin

Journal, date & volume: J. Gen. Physiol., 2015 Oct 12 , ,

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/26458875


Abstract
Thermosensitive members of the transient receptor potential (TRP) family of ion channels (thermal TRP channels) play a crucial role in mammalian temperature sensing. Orthologues of these channels are present in lower vertebrates and, remarkably, some thermal TRP orthologues from different species appear to mediate opposing responses to temperature. For example, whereas the mammalian TRPV3 channel is activated by heat, frog TRPV3 is reportedly activated by cold. Intrigued by the potential implications of these opposing responses to temperature for the mechanism of temperature-dependent gating, we cloned Xenopus laevis TRPV3 and functionally expressed it in both mammalian cell lines and Xenopus oocytes. We found that, when expressed in mammalian cells, the recombinant channel lacks the reported cold sensitivity; rather, it is activated by temperatures >50°C. Furthermore, when expressed in mammalian cells, the frog orthologue shows other features characteristic of mammalian TRPV3, including activation by the agonist 2-aminoethoxydiphenyl borate and an increased response with repeated stimulation. We detected both heat- and cold-activated currents in Xenopus oocytes expressing the recombinant frog TRPV3 channel. However, cold-activated currents were also apparent in control oocytes lacking recombinant TRPV3. Our data indicate that frog TRPV3 resembles its mammalian orthologues in terms of its thermosensitivity and is intrinsically activated by heat. Thus, all known vanilloid receptors are activated by heat. Our data also show that Xenopus oocytes contain endogenous receptors that are activated by cold, and suggest that cold sensitivity of TRP channels established using Xenopus oocytes as a functional expression system may need to be revisited.