Channelpedia

PubMed 23812165


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: KCNK3 , KCNK5



Title: G protein modulation of K2P potassium channel TASK-2 : a role of basic residues in the C terminus domain.

Authors: Carolina Añazco, Gaspar Peña-Münzenmayer, Carla Araya, L Pablo Cid, Francisco V Sepúlveda, María Isabel Niemeyer

Journal, date & volume: Pflugers Arch., 2013 Dec , 465, 1715-26

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/23812165


Abstract
TASK-2 (K2P5.1) is a background K(+) channel opened by extra- or intracellular alkalinisation that plays a role in renal bicarbonate handling, central chemoreception and cell volume regulation. Here, we present results that suggest that TASK-2 is also modulated by Gβγ subunits of heterotrimeric G protein. TASK-2 was strongly inhibited when GTP-γ-S was used as a replacement for intracellular GTP. No inhibition was present using GDP-β-S instead. Purified Gβγ introduced intracellularly also inhibited TASK-2 independently of whether GTP or GDP-β-S was present. The effects of GTP-γ-S and Gβγ subunits were abolished by neutralisation of TASK-2 C terminus double lysine residues K257-K258 or K296-K297. Use of membrane yeast two hybrid (MYTH) experiments and immunoprecipitation assays using tagged proteins gave evidence for a physical interaction between Gβ1 and Gβ2 subunits and TASK-2, in agreement with expression of these subunits in proximal tubule cells. Co-immunoprecipitation was impeded by mutating C terminus K257-K258 (but not K296-K297) to alanines. Gating by extra- or intracellular pH was unaltered in GTP-γ-S-insensitive TASK-2-K257A-K258A mutant. Shrinking TASK-2-expressing cells in hypertonic solution decreased the current to 36 % of its initial value. The same manoeuvre had a significantly diminished effect on TASK-2-K257A-K258A- or TASK-2-K296-K297-expressing cells, or in cells containing intracellular GDP-β-S. Our data are compatible with the concept that TASK-2 channels are modulated by Gβγ subunits of heterotrimeric G protein. We propose that this modulation is a novel way in which TASK-2 can be tuned to its physiological functions.