PubMed 23997200
Referenced in: none
Automatically associated channels: HCN2 , HCN3 , HCN4
Title: Phylogeny and effects of anoxia on hyperpolarization-activated cyclic nucleotide-gated channel gene expression in the heart of a primitive chordate, the Pacific hagfish (Eptatretus stoutii).
Authors: Christopher M Wilson, Jonathan A W Stecyk, Christine S Couturier, Göran E Nilsson, Anthony P Farrell
Journal, date & volume: J. Exp. Biol., 2013 Dec 1 , 216, 4462-72
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/23997200
Abstract
The aneural heart of the Pacific hagfish, Eptatretus stoutii, varies heart rate fourfold during recovery from anoxia. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which play an important role in establishing the pacemaker rate of vertebrate hearts, were postulated to be present in this ancestral vertebrate heart, and it was also theorized that changes in hagfish heart rate with oxygen availability involved altered HCN expression. Partial gene cloning revealed six HCN isoforms in the hagfish heart. Hagfish representatives of HCN2, HCN3 and HCN4 were discovered, with HCN2 and HCN3 existing as isoforms designated as HCN2a, HCN2b, HCN3a, two paralogs of HCN3b, and HCN3c. Phylogenetic analysis revealed HCN3b and HCN3c to be ancestral, followed by HCN3a, HCN4 and HCN2. Moreover, HCN3a expression was dominant in both the atrial and ventricular chambers, suggesting that the HCN4 dominance in adult mammalian hearts appeared after hagfish divergence. HCN expression was higher in the atrium than in the ventricle, as might be expected given that atrial beating rate is known to be faster than the ventricular rate. In addition, mRNA expression under normoxic conditions was compared with that following 24 h of anoxia, and either a 2-h or 36-h recovery in normoxic water. In the ventricle, anoxia decreased HCN3a but not HCN4 expression. In contrast, atrial HCN3a expression significantly increased following 2 h of recovery, before returning to control levels following 36 h of recovery, possibly contributing to heart rate changes previously observed under these conditions.