Channelpedia

PubMed 24211404


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kv10.1



Title: Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis.

Authors: Irene Zubiri, Maria Posada-Ayala, Aroa Sanz-Maroto, Enrique Calvo, Marta Martin-Lorenzo, Laura Gonzalez-Calero, Fernando de la Cuesta, Juan A Lopez, Beatriz Fernandez-Fernandez, Alberto Ortiz, Fernando Vivanco, Gloria Alvarez-Llamas

Journal, date & volume: J Proteomics, 2014 Jan 16 , 96, 92-102

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/24211404


Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM), the most frequent cause of end-stage renal disease (ESRD). Exosomes isolated from urine are considered a rich non-invasive source of markers for renal events. Proteinuria associated with DN patients at advanced stages may result in "contamination" of exosomal fraction by co-precipitation of high abundance urine proteins, making it enormously difficult to obtain a reliable comparison of healthy individuals and DN patients and to detect minor proteins. We evaluated different protocols for urinary exosome isolation (ultracentrifugation-based and Exoquick® reagent-based) in combination with an easy and quick depletion procedure of contaminating high abundance proteins (albumin). The optimal methodology was then applied to investigate the proteome of human urinary exosomes in DN and controls using spectral counting LC-MS/MS analysis followed by selected reaction monitoring (SRM) confirmation. A panel of 3 proteins (AMBP, MLL3, and VDAC1) is differentially present in urinary exosomes from DN patients, opening a new field of research focused on improving diagnosis and follow-up of this pathology.Diabetic nephropathy (DN) is a progressive proteinuric kidney disease, a major complication of diabetes mellitus, and the most frequent cause of end-stage renal disease. Current markers of disease (i.e. creatinine and urinary albumin excretion) have proven limitations (i.e. some patients regress to normoalbuminuria, kidney damage may be already present in recently diagnoses microalbuminuric patients and renal function may decrease in the absence of significant albuminuria). We show here the first study on human DN proteome of urinary exosomes. Proteinuria associated to DN patients resulting in contamination of exosomal fraction and the associated difficulty to reliably compare healthy and disease conditions, are here overcome. A combined methodology pointed to increase exosomal proteome recovery and depletion of high-abundance proteome was here set-up. A total of 352 proteins were here identified for the first time associated to human urinary exosomes. Label-free quantitative comparison of DN urinary exosomes vs control group and SRM further validation, resulted in the discovery of a panel of three proteins (AMBP, MLL3 and VDAC1) which changes in DN, opening a new field of research focused to improve diagnosis and follow-up of this pathology.