PubMed 24506535

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Cav1.2

Title: Uncoupling of Cav1.2 from Ca(2+)-induced Ca(2+) release and SK channel regulation in pancreatic β-cells.

Authors: Yuchen Wang, Rachel E Jarrard, Evan P S Pratt, Marcy L Guerra, Amy E Salyer, Allison M Lange, Ian M Soderling, Gregory H Hockerman

Journal, date & volume: Mol. Endocrinol., 2014 Apr , 28, 458-76

PubMed link:

We investigated the role of Cav1.2 in pancreatic β-cell function by expressing a Cav1.2 II-III loop/green fluorescent protein fusion in INS-1 cells (Cav1.2/II-III cells) to disrupt channel-protein interactions. Neither block of KATP channels nor stimulation of membrane depolarization by tolbutamide was different in INS-1 cells compared with Cav1.2/II-III cells, but whole-cell Cav current density was significantly increased in Cav1.2/II-III cells. Tolbutamide (200 μM) stimulated insulin secretion and Ca(2+) transients in INS-1 cells, and Cav1.2/II-III cells were completely blocked by nicardipine (2 μM), but thapsigargin (1 μM) blocked tolbutamide-stimulated secretion and Ca(2+) transients only in INS-1 cells. Tolbutamide-stimulated endoplasmic reticulum [Ca(2+)] decrease was reduced in Cav1.2/II-III cells compared with INS-1 cells. However, Ca(2+) transients in both INS-1 cells and Cav1.2/II-III cells were significantly potentiated by 8-pCPT-2'-O-Me-cAMP (5 μM), FPL-64176 (0.5 μM), or replacement of extracellular Ca(2+) with Sr(2+). Glucose (10 mM) + glucagon-like peptide-1 (10 nM) stimulated discrete spikes in [Ca(2+)]i in the presence of verapamil at a higher frequency in INS-1 cells than in Cav1.2/II-II cells. Glucose (18 mM) stimulated more frequent action potentials in Cav1.2/II-III cells and primary rat β-cells expressing the Cav1.2/II-II loop than in control cells. Further, apamin (1 μM) increased glucose-stimulated action potential frequency in INS-1 cells, but not Cav1.2/II-III cells, suggesting that SK channels were not activated under these conditions in Cav1.2/II-III loop-expressing cells. We propose the II-III loop of Cav1.2 as a key molecular determinant that couples the channel to Ca(2+)-induced Ca(2+) release and activation of SK channels in pancreatic β-cells.