Channelpedia

PubMed 24530356


Referenced in: none

Automatically associated channels: Kir2.3



Title: Brite/beige fat and UCP1 - is it thermogenesis?

Authors: Susanne Keipert, Martin Jastroch

Journal, date & volume: Biochim. Biophys. Acta, 2014 Jul , 1837, 1075-82

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/24530356


Abstract
The presence of two distinct types of adipose tissue, which have opposing functions, has been known for decades. White adipose tissue (WAT) is the main tissue of energy storage, while brown adipose tissue (BAT) dissipates energy as heat and is required for non-shivering thermoregulation. In the last few years, a third type of adipocyte was identified, termed the brite ("brown and white") or beige adipocyte. Their physiological control and role, however, are not fully clarified. Brite/beige adipocytes have a positive impact on systemic metabolism that is generally explained by the thermogenesis of brite/beige adipocytes; although thermogenesis has not been directly measured but is mostly inferred by gene expression data of typical thermogenic genes such as uncoupling protein 1 (UCP1). Here we critically review functional evidence for the thermogenic potential of brite/beige adipocytes, leading to the conclusion that direct measurements of brite/beige adipocyte bioenergetics, beyond gene regulation, are pivotal to quantify their thermogenic potential. In particular, we exemplified that the massive induction of UCP1 mRNA during the browning of isolated subcutaneous adipocytes in vitro is not reflected in significant alterations of cellular bioenergetics. Herein, we demonstrate that increases in mitochondrial respiration in response to beta-adrenergic stimulus can be independent of UCP1. Using HEK293 cells expressing UCP1, we show how to directly assess UCP1 function by adequate activation in intact cells. Finally, we provide a guide on the interpretation of UCP1 activity and the pitfalls by solely using respiration measurements. The functional analysis of beige adipocyte bioenergetics will assist to delineate the impact of browning on thermogenesis, possibly elucidating additional physiological roles and its contribution to systemic metabolism, highlighting possible avenues for future research. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.