PubMed 24584018

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: TRP , TRPV , TRPV1

Title: [Study on novel mechanism underlying analgesia targeting TRPV1].

Authors: Takehiko Maeda, Masanobu Ozaki

Journal, date & volume: Yakugaku Zasshi, 2014 , 134, 373-8

PubMed link:

Transient receptor potential protein (TRP) channels are distributed in pain pathways including primary afferent neurons and function as transduction of various noxious stimuli to innocuous stimuli. TRP channels are considered as molecular basis of chronic pain. Targeting TRPs may lead to novel class of analgesics, and so drug-discovery efforts are focused on TRP agonists and its antagonists. Few products have, however, been placed on the market, because most of candidates have adverse effects. A lesion or disease of the somatosensory nervous system causes neuropathic pain, a type of chronic pain. Neuropathic pain is intolerable and obstinate and therefore, debilitates the affected patients. A great deal of effort has been made to develop medicine targeting molecules involved in neuropathic pain, whereby the promising therapeutically targeted molecules have been identified. Neuroinflammation, based on pathological alteration in crosstalk between nervous system and immune system, has been a focus of attention as pathological mechanism involved in development of neuropathic pain. Recently, we used an animal model for neuropathic pain to find the possibility that neuropathic pain was exacerbated by adipokines derived from perineural adipocytes distributed in injured peripheral neurons. A working hypothesis is therefore proposed that the perineural adipocytes interacts with the immune cells, which also have TRPV1, in injured peripheral nerve, followed by a paracrine loop involving proinflammatory cytokines, chemokines and adipokines derived from them which aggravates and prolongs pain. Here, we overview the developmental status in TRPV1-targetting analgesics and illustrate our recent findings in terms of neuroinflammation.