PubMed 15145331
Referenced in: none
Automatically associated channels: ClC3 , ClC4
Title: Oxidative stress-induced up-regulation of the chloride channel and Na+/Ca2+ exchanger during cataractogenesis in diabetic rats.
Authors: Kota V Ramana, Deepak Chandra, Nancy K Wills, Aruni Bhatnagar, Satish K Srivastava
Journal, date & volume: J. Diabetes Complicat., 2004 May-Jun , 18, 177-82
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15145331
Abstract
We have determined the abundance of the chloride channel, ClC-3, and Na(+)/Ca(2+) exchanger proteins in isolated rat lens cortex fiber cells by immunofluorescence method using polyclonal anti-ClC-3 antibodies and monoclonal antibodies against the canine cardiac Na(+)/Ca(2+) exchanger protein. These proteins were also quantified in the lens cortex of streptozotocin-injected rats by Western blots. Also, mRNA for ClC-3 was determined by Northern blot analysis. The isolated rat lens cortical fibers expressed basal levels of ClC-3 and Na(+)/Ca(2+) exchanger proteins. As compared to controls, the ClC-3 protein in the lens cortex of diabetic rats (blood glucose>400 mg%) increased by 2.5-fold in 7 days and 4.5-fold in 14 days. However, the ClC-3 protein decreased to near-normal values in 40 days. The changes in ClC-3 mRNA closely followed the protein levels. Similarly, as compared to controls, on Day 7, the Na(+)/Ca(2+) exchanger protein in the diabetic rat lens cortex increased by 3.5-fold and on Day14 by 5.5-fold. Subsequently, it decreased to control levels on Day 40. Treatment with the antioxidant, Trolox (2 mg/kg body weight), prevented the initial increase in ClC-3 and Na(+)/Ca(2+) exchanger proteins. The up-regulation of ClC-3 and Na(+)/Ca(2+) exchanger proteins during the early stages of diabetes and its prevention by antioxidants suggests that the proteins regulating ion transport may have a pathophysiological role in the development of diabetic cataracts.