PubMed 25065497
Referenced in: none
Automatically associated channels: TRP , TRPM , TRPM8
Title: Ion channel TRPM8 promotes hypoxic growth of prostate cancer cells via an O2 -independent and RACK1-mediated mechanism of HIF-1α stabilization.
Authors: Shan Yu, Zhenyu Xu, Chang Zou, Dinglan Wu, Yuliang Wang, Xiaoqiang Yao, Chi-Fai Ng, Franky L Chan
Journal, date & volume: J. Pathol., 2014 Dec , 234, 514-25
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/25065497
Abstract
The growth adaptation of cancer cells to a hypoxic tumour microenvironment is mostly regulated by hypoxia-induced transcription factor HIF-1. HIF-1 transcriptional activity is strictly controlled by protein levels of the HIF-1α subunit, which is tightly regulated by a well-characterized O2 -dependent ubiquitin ligase-proteasomal degradation pathway. The cold-sensitive Ca(2+) channel protein TRPM8 exhibits increased expression in advanced prostate cancer. However, its exact functional roles in prostate cancer growth regulation are unclear and controversial. In this work, we show that TRPM8 promotes in vitro hypoxic growth capacities, drug resistance, and in vivo tumourigenicity, accompanied with enhanced HIF-1α protein levels. These effects are further potentiated by TRPM8 agonists but suppressed by TRPM8 gene knockdown and blocking with antagonists or TRPM8 antibody. TRPM8-induced suppression of HIF-1α ubiquitination and enhanced HIF-1 transactivation were attenuated by forced RACK1 expression and TRPM8 overexpression reduced phospho-RACK1 levels, thus affecting its dimerization status, and promoted RACK1 binding to HIF-1α and calcineurin. These data indicate that TRPM8-induced increase of HIF-1α protein in hypoxia- or normoxia-exposed prostate cancer cells was mediated through a newly characterized Ca(2+) -dependent but O2 -independent mechanism involving binding of RACK1 to HIF-1α and RACK1-mediated ubiquitination of HIF-1α. Collectively, our study not only provides a mechanistic insight into how TRPM8 promotes the hypoxic growth adaptation of cancer cells via its promotion of RACK1-mediated stabilization of HIF-1α but also suggests a potential therapeutic strategy for prostate cancer by targeting TRPM8.