Channelpedia

PubMed 25445271


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kv10.1 , TRP , TRPM , TRPML , TRPML1 , TRPML2



Title: PAX5 is the transcriptional activator of mucolipin-2 (MCOLN2) gene.

Authors: Jessica A Valadez, Math P Cuajungco

Journal, date & volume: Gene, 2015 Jan 25 , 555, 194-202

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/25445271


Abstract
Transient receptor potential mucolipin (TRPML) proteins belong to the TRP superfamily of non-selective cation channels. The TRPML1, -2, and -3 proteins are encoded by Mucolipin (MCOLN)-1, -2 and -3 genes, respectively. TRPML1 has been associated with mucolipidosis type IV (MLIV), while no disease phenotype has been linked with TRPML2 or -3 protein. The TRPML proteins share high sequence similarities, form hetero-tetramers, and serve in membrane trafficking, autophagy, and metal homeostasis. Previous studies suggest that TRPML2 serves a role in the immune system; however, the evidence is mostly indirect. We hypothesize that if TRPML2 is involved in immune function its expression would be likely regulated by an immune-associated transcription factor protein. Thus, we set out to identify the core promoter region and the transcription factor responsible for MCOLN2 gene expression. Using dual-luciferase assay and over-expression analyses, we reveal for the first time that B-cell lineage specific activator protein (BSAP), also known as paired box 5 (PAX5), controls MCOLN2 expression. Specifically, heterologous expression of PAX5 in HEK-293 cells significantly increased endogenous MCOLN2 transcript and TRPML2 protein levels, while RNA interference targeting endogenous PAX5 reduced its effect. Site-directed mutagenesis studies showed that the core promoter and PAX5 binding region to be between -79 and -60 base pairs upstream of the transcriptional start site. Thus, our findings add to a growing list of evidence for TRPML2's possible involvement in the immune system. The knowledge gained from this study could be used to further characterize the role of TRPML2 in B-cell development and function.