PubMed 25552582

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kir6.1

Title: Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex.

Authors: Minho Kang, Atsushi Hashimoto, Aravind Gade, Hamid I Akbarali

Journal, date & volume: Am. J. Physiol. Gastrointest. Liver Physiol., 2015 Mar 15 , 308, G532-9

PubMed link:

Hydrogen sulfide (H₂S) is an endogenous gaseous mediator affecting many physiological and pathophysiological conditions. Enhanced expression of H2S and reactive nitrogen/oxygen species (RNS/ROS) during inflammation alters cellular excitability via modulation of ion channel function. Sulfhydration of cysteine residues and tyrosine nitration are the posttranslational modifications induced by H₂S and RNS, respectively. The objective of this study was to define the interaction between tyrosine nitration and cysteine sulfhydration within the ATP-sensitive K(+) (KATP) channel complex, a significant target in experimental colitis. A modified biotin switch assay was performed to determine sulfhydration of the KATP channel subunits, Kir6.1, sulphonylurea 2B (SUR2B), and nitrotyrosine measured by immunoblot. NaHS (a donor of H₂S) significantly enhanced sulfhydration of SUR2B but not Kir6.1 subunit. 3-Morpholinosydnonimine (SIN-1) (a donor of peroxynitrite) induced nitration of Kir6.1 subunit but not SUR2B. Pretreatment with NaHS reduced the nitration of Kir6.1 by SIN-1 in Chinese hamster ovary cells cotransfected with the two subunits, as well as in enteric glia. Two specific mutations within SUR2B, C24S, and C1455S prevented sulfhydration by NaHS, and these mutations prevented NaHS-induced reduction in tyrosine nitration of Kir6.1. NaHS also reversed peroxynitrite-induced inhibition of smooth muscle contraction. These studies suggest that posttranslational modifications of the two subunits of the KATP channel interact to alter channel function. The studies described herein demonstrate a unique mechanism by which sulfhydration of one subunit modifies tyrosine nitration of another subunit within the same channel complex. This interaction provides a mechanistic insight on the protective effects of H₂S in inflammation.