PubMed 23716168
Referenced in: none
Automatically associated channels: Kv11.1
Title: AMP-activated protein kinase regulates hERG potassium channel.
Authors: Ahmad Almilaji, Carlos Munoz, Bernat Elvira, Abul Fajol, Tatsiana Pakladok, Sabina Honisch, Ekaterina Shumilina, Florian Lang, Michael Föller
Journal, date & volume: Pflugers Arch., 2013 Nov , 465, 1573-82
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/23716168
Abstract
Besides their role in cardiac repolarization, human ether-a-go-go-related gene potassium (hERG) channels are expressed in several tumor cells including rhabdomyosarcoma cells. The channels foster cell proliferation. Ubiquitously expressed AMP-dependent protein kinase (AMPK) is a serine-/threonine kinase, stimulating energy-generating and inhibiting energy-consuming processes thereby helping cells survive periods of energy depletion. AMPK has previously been shown to regulate Na⁺/K⁺ ATPase, Na⁺/Ca²⁺ exchangers, Ca²⁺ channels and K⁺ channels. The present study tested whether AMPK regulates hERG channel activity. Wild type AMPK (α1β1γ1), constitutively active (γR70Q)AMPK (α1β1γ1(R70Q)), or catalytically inactive (αK45R)AMPK (α1(K45R)β1γ1) were expressed in Xenopus oocytes with hERG. Tail currents were determined as a measure of hERG channel activity by two-electrode-voltage clamp. hERG membrane abundance was quantified by chemiluminescence and visualized by immunocytochemistry and confocal microscopy. Moreover, hERG currents were measured in RD rhabdomyosarcoma cells after pharmacological modification of AMPK activity using the patch clamp technique. Coexpression of wild-type AMPK and of constitutively active (γR70Q)AMPK significantly downregulated the tail currents in hERG-expressing Xenopus oocytes. Pharmacological activation of AMPK with AICAR or with phenformin inhibited hERG currents in Xenopus oocytes, an effect abrogated by AMPK inhibitor compound C. (γR70Q)AMPK enhanced the Nedd4-2-dependent downregulation of hERG currents. Coexpression of constitutively active (γR70Q)AMPK decreased membrane expression of hERG in Xenopus oocytes. Compound C significantly enhanced whereas AICAR tended to inhibit hERG currents in RD rhabdomyosarcoma cells. AMPK is a powerful regulator of hERG-mediated currents in both, Xenopus oocytes and RD rhabdomyosarcoma cells. AMPK-dependent regulation of hERG may be particularly relevant in cardiac hypertrophy and tumor growth.