Channelpedia

PubMed 23838006


Referenced in: none

Automatically associated channels: Slo1 , TRP , TRPM , TRPM7



Title: Aldosterone signaling through transient receptor potential melastatin 7 cation channel (TRPM7) and its α-kinase domain.

Authors: Alvaro Yogi, Glaucia E Callera, Sarah O'Connor, Tayze T Antunes, William Valinsky, Perrine Miquel, Augusto C I Montezano, Anne-Laure Perraud, Carsten Schmitz, Alvin Shrier, Rhian M Touyz

Journal, date & volume: Cell. Signal., 2013 Nov , 25, 2163-75

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/23838006


Abstract
We demonstrated a role for the Mg(2+) transporter TRPM7, a bifunctional protein with channel and α-kinase domains, in aldosterone signaling. Molecular mechanisms underlying this are elusive. Here we investigated the function of TRPM7 and its α-kinase domain on Mg(2+) and pro-inflammatory signaling by aldosterone. Kidney cells (HEK-293) expressing wild-type human TRPM7 (WThTRPM7) or constructs in which the α-kinase domain was deleted (ΔKinase) or rendered inactive with a point mutation in the ATP binding site of the α-kinase domain (K1648R) were studied. Aldosterone rapidly increased [Mg(2+)]i and stimulated NADPH oxidase-derived generation of reactive oxygen species (ROS) in WT hTRPM7 and TRPM7 kinase dead mutant cells. Translocation of annexin-1 and calpain-II and spectrin cleavage (calpain target) were increased by aldosterone in WT hTRPM7 cells but not in α-kinase-deficient cells. Aldosterone stimulated phosphorylation of MAP kinases and increased expression of pro-inflammatory mediators ICAM-1, Cox-2 and PAI-1 in Δkinase and K1648R cells, effects that were inhibited by eplerenone (mineralocorticoid receptor (MR) blocker). 2-APB, a TRPM7 channel inhibitor, abrogated aldosterone-induced Mg(2+) responses in WT hTRPM7 and mutant cells. In 2-APB-treated ΔKinase and K1648R cells, aldosterone-stimulated inflammatory responses were unchanged. These data indicate that aldosterone stimulates Mg(2+) influx and ROS production in a TRPM7-sensitive, kinase-insensitive manner, whereas activation of annexin-1 requires the TRPM7 kinase domain. Moreover TRPM7 α-kinase modulates inflammatory signaling by aldosterone in a TRPM7 channel/Mg(2+)-independent manner. Our findings identify novel mechanisms for non-genomic actions of aldosterone involving differential signaling through MR-activated TRPM7 channel and α-kinase.