PubMed 24583134
Referenced in: none
Automatically associated channels: ClC4 , ClCA3
Title: Interleukin-13-induced MUC5AC expression is regulated by a PI3K-NFAT3 pathway in mouse tracheal epithelial cells.
Authors: Fugui Yan, Wen Li, Hongbin Zhou, Yinfang Wu, Songmin Ying, Zhihua Chen, Huahao Shen
Journal, date & volume: Biochem. Biophys. Res. Commun., 2014 Mar 28 , 446, 49-53
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/24583134
Abstract
Interleukin-13 (IL-13) plays a critical role in asthma mucus overproduction, while the mechanisms underlying this process are not fully elucidated. Previous studies showed that nuclear factor of activated T cells (NFAT) is involved in the pathogenesis of asthma, but whether it can directly regulate IL-13-induced mucus (particularly MUC5AC) production is still not clear. Here we showed that IL-13 specifically induced NFAT3 activation through promoting its dephosphorylation in air-liquid interface (ALI) cultures of mouse tracheal epithelial cells (mTECs). Furthermore, both Cyclosporin A (CsA, a specific NFAT inhibitor) and LY294002 (a Phosphoinositide 3-kinase (PI3K) inhibitor) significantly blocked IL-13-induced MUC5AC mRNA and protein production through the inhibition of NFAT3 activity. We also confirmed that CsA could not influence the forkhead Box A2 (Foxa2) and mouse calcium dependent chloride channel 3 (mClca3) expression in IL-13-induced MUC5AC production, which both are known to be important in IL-13-stimulated mucus expression. Our study is the first to demonstrate that the PI3K-NFAT3 pathway is positively involved in IL-13-induced mucus production, and provided novel insights into the molecular mechanism of asthma mucus hypersecretion.