Channelpedia

PubMed 24673124


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kir2.3



Title: Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials.

Authors: Xin-Long Ni, Xin Xiao, Hang Cong, Qian-Jiang Zhu, Sai-Feng Xue, Zhu Tao

Journal, date & volume: Acc. Chem. Res., 2014 Apr 15 , 47, 1386-95

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/24673124


Abstract
Supramolecular architectures and materials have attracted immense attention during the last decades because they not only open the possibility of obtaining a large variety of aesthetically interesting structures but also have applications in gas storage, sensors, separation, catalysis, and so on. On the other hand, cucurbit[n]urils (Q[n]s), a relatively new class of macrocyclic hosts with a rigid hydrophobic cavity and two identical carbonyl fringed portals, have attracted much attention in supramolecular chemistry. Because of the strong charge-dipole and hydrogen bonding interactions, as well as hydrophobic and hydrophilic effect derived from the negative portals and rigid cavities of Q[n]s, nearly all research in Q[n]s has been focused on utilizing the portals and cavities to construct supramolecular assemblies similar to other macrocyclic receptors such as cyclodextrin and calixarenes. Interestingly, a recent study revealed that other weak noncovalent interactions such as hydrogen bonding and π···π stacking, as well as C-H···π and ion-dipole interactions, could also be defined as "outer-surface interactions", which are derived from the electrostatically positive outer surface of Q[n]s. These interactions could be the driving forces in the formation of various novel Q[n]-based supramolecular architectures and functional materials. In this Account, we provide a comprehensive overview of supramolecular self-assemblies based on the outer-surface interactions of Q[n]s. These outer-surface interactions include those between Q[n]s, Q[n]s and aromatic molecules, Q[n]s and calixarenes, Q[n]s and inorganic complex ions, and Q[n]s and polyoxometalates. Pioneering work has shown that such weak noncovalent interactions play very important roles in the formation of various Q[n]-based functional materials and supramolecular architectures. For example, hydrogen bonds in outer-surface interactions between Q[n] molecules not only function as the sole driving force in the formation of one-dimensional Q[n] porous channels but also assist the bonding forces of the channels in capturing and accommodating acetylene molecules and carbon dioxide in the channel cavities. Moreover, upon introduction of a third species such as an aromatic molecule or inorganic anion into the Q[n]/metal system, "outer-surface interactions" could lead to Q[n]/metal-based self-assemblies from simple finite supramolecular coordination complexes to infinite polydimensional supramolecular architectures and other structures. Overall, this Account focuses on the novel self-assembly driving force derived from Q[n]s including (i) concepts of the outer-surface interactions of Q[n]s, (ii) providing plausible explanations of the mechanisms of the outer-surface interactions of Q[n]s, and (iii) introduction of an overview of the developments and practical applications of outer-surface interactions of Q[n]s in supramolecular chemistry. It is hoped that this study based on the outer-surface interactions of Q[n]s can enrich the field of molecular engineering of functional supramolecular systems and provide new opportunities for the construction of functional materials and architectures.