PubMed 24704448

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: SK3

Title: mTOR-targeted therapy: differential perturbation to mitochondrial membrane potential and permeability transition pore plays a role in therapeutic response.

Authors: Jae Eun Kim, Qun He, Yaqing Chen, Celine Shi, Ker Yu

Journal, date & volume: Biochem. Biophys. Res. Commun., 2014 Apr 25 , 447, 184-91

PubMed link:

While cancer cell mitochondria mediate actions of many successful chemotherapeutics, little is known about mitochondrial response in mTOR-targeted anticancer therapy. We have studied mitochondrial dynamics in relation to growth suppression employing an allosteric inhibitor rapalog, a highly selective mTOR kinase inhibitor (mTOR-KI) and mTOR-ShRNA. Global targeting of mTOR increased mitochondrial membrane potential (mΔψ) and inhibited mitochondrial permeability transition pore (mPTP). Importantly, these mTOR-KI-provoked anti-survival and pro-survival effects were differentially manifested in diverse cancer cells according to intrinsic susceptibility to mTOR-targeting. The most-sensitive cells including those possessing hyperactive PI3K/AKT/mTOR and/or growth factor-dependence (LNCap, MDA361 and MG63) all displayed a dramatic increase in mΔψ, whereas the mΔψ increase was not evident in majority of resistant cancer cells. Upon mTOR-KI treatment, the resistant cells including those harboring K-Ras- or B-Raf mutation (MDA231, HT29 and HCT116) all displayed a markedly reduced mPTP opening, which paralleled a sustained AKT-hexokinase 2 (HK2) survival signaling and persistent phosphorylation (inactivation) of GSK3β. Further studies demonstrated that the mTOR-KI-provoked mPTP closure in resistant cells was mediated through an enhanced binding of HK2 to the mitochondrial voltage-dependent anion channel (VDAC), a molecular mechanism known to promote mPTP closure and cell survival. Detaching HK2 from VDAC by an HK2-displacing peptide or methyl jasmonate specifically blocked the mTOR-KI-provoked mPTP closure and potentiated growth suppression in resistant cells. Thus, mTOR-inhibition can exert complex and differential perturbation to mitochondrial dynamics in cancer cells, which likely influence therapeutic outcome of mTOR-targeted therapy.