PubMed 24407175
Referenced in: none
Automatically associated channels: Cav1.3 , Slo1 , TRP , TRPV
Title: CaV1.3 L-type channels, maxiK Ca(2+)-dependent K(+) channels and bestrophin-1 regulate rhythmic photoreceptor outer segment phagocytosis by retinal pigment epithelial cells.
Authors: Claudia Müller, Néstor Más Gómez, Peter Ruth, Olaf Strauss
Journal, date & volume: Cell. Signal., 2014 Jan 7 , ,
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/24407175
Abstract
Phagocytosis of shed photoreceptor outer segments by the retinal pigment epithelium (RPE) is critical for maintenance of visual function. Because changes in intracellular Ca(2+) regulate phagocytosis, we studied in vitro the impact of different ion channels in addition to mice deficient for Cav1.3 L-type Ca(2+) channels (Ca1.3(-/-)) and maxiK Ca(2+)-dependent K(+) channels (BK(-/-)). The knockdown of Bestrophin-1 protein, a regulator of intracellular Ca(2+) homeostasis, affected phagocytosis in porcine RPE cultures. Blockage of voltage-gated L-type channels by (+)BayK8644 inhibitor reduced phagocytosis in vitro, in contrast L-type activation by (-)BayK8644 had no impact. The expression rate of Cav1.3, the predominant L-type Ca(2+) channel in RPE cells, varied at different times of day. CaV1.3(-/-) RPE lacked peak phagocytic activity following morning photoreceptor shedding in wild-type RPE and retained a higher number of phagosomes at a later time of day. The BK-channel blocker paxilline lowered phagocytosis in RPE cultures in a concentration-dependent manner. BK(-/-) RPE in vivo retained phagocytic capability but this activity, which is normally well synchronized with circadian photoreceptor shedding, shifted out of phase. Retinae of older BK(-/-) mice showed shortened photoreceptor outer segments and diminished rhodopsin content. Store-operated Ca(2+) channels Orai-1 did not affect phagocytosis in cultured RPE. TRPV channel inhibition by ruthenium-red reduced phagocytosis, whereas activation at high concentrations of 2-APB increased phagocytosis. Our data demonstrate essential roles for bestrophin-1, BK, TRPV and L-type channels in regulating retinal phagocytosis. These data indicate further the importance of BK and CaV1.3 for rhythmic phagocytic activity synchronized with photoreceptor shedding.